语料库-提供经典范文,文案句子,常用文书,您的写作得力助手

雅思閱讀模擬真題:Sun's fickle heart may leave us cold

雕龍文庫 分享 時間: 收藏本文

雅思閱讀模擬真題:Sun's fickle heart may leave us cold

  雅思閱讀真題模擬練習

  本系列的模擬試題在難度、長度、題材、題型方面都與雅思考試近似的練習。這些練習,均以國外報刊上的文章為素材,按雅思閱讀的題型,出題并提供答案及簡單注釋。歡迎大家積極使用。

  Suns fickle heart may leave us cold

  1 Theres a dimmer switch inside the sun that causes its brightness to rise and fall on timescales of around 100,000 years - exactly the same period as between ice ages on Earth. So says a physicist who has created a computer model of our stars core.

  2 Robert Ehrlich of George Mason University in Fairfax, Virginia, modelled the effect of temperature fluctuations in the suns interior. According to the standard view, the temperature of the suns core is held constant by the opposing pressures of gravity and nuclear fusion. However, Ehrlich believed that slight variations should be possible.

  3 He took as his starting point the work of Attila Grandpierre of the Konkoly Observatory of the Hungarian Academy of Sciences. In 2005, Grandpierre and a collaborator, Gbor goston, calculated that magnetic fields in the suns core could produce small instabilities in the solar plasma. These instabilities would induce localised oscillations in temperature.

  4 Ehrlichs model shows that whilst most of these oscillations cancel each other out, some reinforce one another and become long-lived temperature variations. The favoured frequencies allow the suns core temperature to oscillate around its average temperature of 13.6 million kelvin in cycles lasting either 100,000 or 41,000 years. Ehrlich says that random interactions within the suns magnetic field could flip the fluctuations from one cycle length to the other.

  5 These two timescales are instantly recognisable to anyone familiar with Earths ice ages: for the past million years, ice ages have occurred roughly every 100,000 years. Before that, they occurred roughly every 41,000 years.

  6 Most scientists believe that the ice ages are the result of subtle changes in Earths orbit, known as the Milankovitch cycles. One such cycle describes the way Earths orbit gradually changes shape from a circle to a slight ellipse and back again roughly every 100,000 years. The theory says this alters the amount of solar radiation that Earth receives, triggering the ice ages. However, a persistent problem with this theory has been its inability to explain why the ice ages changed frequency a million years ago.

  7 In Milankovitch, there is certainly no good idea why the frequency should change from one to another, says Neil Edwards, a climatologist at the Open University in Milton Keynes, UK. Nor is the transition problem the only one the Milankovitch theory faces. Ehrlich and other critics claim that the temperature variations caused by Milankovitch cycles are simply not big enough to drive ice ages.

  8 However, Edwards believes the small changes in solar heating produced by Milankovitch cycles are then amplified by feedback mechanisms on Earth. For example, if sea ice begins to form because of a slight cooling, carbon dioxide that would otherwise have found its way into the atmosphere as part of the carbon cycle is locked into the ice. That weakens the greenhouse effect and Earth grows even colder.

  9 According to Edwards, there is no lack of such mechanisms. If you add their effects together, there is more than enough feedback to make Milankovitch work, he says. The problem now is identifying which mechanisms are at work. This is why scientists like Edwards are not yet ready to give up on the current theory. Milankovitch cycles give us ice ages roughly when we observe them to happen. We can calculate where we are in the cycle and compare it with observation, he says. I cant see any way of testing idea to see where we are in the temperature oscillation.

  10 Ehrlich concedes this. If there is a way to test this theory on the sun, I cant think of one that is practical, he says. Thats because variation over 41,000 to 100,000 years is too gradual to be observed. However, there may be a way to test it in other stars: red dwarfs. Their cores are much smaller than that of the sun, and so Ehrlich believes that the oscillation periods could be short enough to be observed. He has yet to calculate the precise period or the extent of variation in brightness to be expected.

  11 Nigel Weiss, a solar physicist at the University of Cambridge, is far from convinced. He describes Ehrlichs claims as utterly implausible. Ehrlich counters that Weisss opinion is based on the standard solar model, which fails to take into account the magnetic instabilities that cause the temperature fluctuations.

  

  Questions 1-4  Complete each of the following statements with One or Two names of the scientists from the box below.

  Write the appropriate letters A-E in boxes 1-4 on your answer sheet.

  A. Attila Grandpierre

  B. Gbor goston

  C. Neil Edwards

  D. Nigel Weiss

  E. Robert Ehrlich

  1. ...claims there抯 a dimmer switch inside the sun that causes its brightness to rise and fall in periods as long as those between ice ages on Earth.

  2. ...calculated that the internal solar magnetic fields could produce instabilities in the solar plasma.

  3. ...holds that Milankovitch cycles can induce changes in solar heating on Earth and the changes are amplified on Earth.

  4. ...doesnt believe in Ehrlichs viewpoints at all.

  Questions 5-9  Do the following statements agree with the information given in the reading passage?

  In boxes 5-9 on your answer sheet write

  TRUE if the statement is true according to the passage

  FALSE if the statement is false according to the passage

  NOT GIVEN if the information is not given in the passage

  5. The ice ages changed frequency from 100,000 to 41,000 years a million years ago.

  6. The sole problem that the Milankovitch theory can not solve is to explain why the ice age frequency should shift from one to another.

  7. Carbon dioxide can be locked artificially into sea ice to eliminate the greenhouse effect.

  8. Some scientists are not ready to give up the Milankovitch theory though they havent figured out which mechanisms amplify the changes in solar heating.

  9. Both Edwards and Ehrlich believe that there is no practical way to test when the solar temperature oscillation begins and when ends.

  Questions 10-14  Complete the notes below.

  Choose one suitable word from the Reading Passage above for each answer.

  Write your answers in boxes 10-14 on your answer sheet.

  The standard view assumes that the opposing pressures of gravity and nuclear fusions hold the temperature ...10...in the suns interior, but the slight changes in the earths ...11... alter the temperature on the earth and cause ice ages every 100,000 years. A British scientist, however, challenges this view by claiming that the internal solar magnetic ...12... can induce the temperature oscillations in the suns interior. The suns core temperature oscillates around its average temperature in ...13... lasting either 100,000 or 41,000 years. And the ...14... interactions within the suns magnetic field could flip the fluctuations from one cycle length to the other, which explains why the ice ages changed frequency a million years ago.

  Answer keys and explanations:

  1. E

  See the sentences in paragraph 1 and para.2

  2. A B

  See para.3: ?i style=mso-bidi-font-style: normalGrandpierre and a collaborator, Gbor goston, calculated that magnetic fields in the suns core could produce small instabilities in the solar plasma.

  3. C

  See para.8: Edwards believes the small changes in solar heating produced by Milankovitch cycles are then amplified by feedback mechanisms on Earth.

  4. D

  See para.11: Nigel Weiss, a solar physicist at the University of Cambridge, is far from convinced. He describes Ehrlichs claims as utterly implausible.

  5. False

  See para.5: for the past million years, ice ages have occurred roughly every 100,000 years. Before that, they occurred roughly every 41,000 years.

  6. False

  See para.7: In Milankovitch, there is certainly no good idea why the frequency should change from one to another, ... Nor is the transition problem the only one the Milankovitch theory faces.

  7. Not Given

  See para.8: if sea ice begins to form because of a slight cooling, carbon dioxide?is locked into the ice. That weakens the greenhouse effect.

  8. True

  See para.9: there is no lack of such mechanisms. If you add their effects together, there is more than enough feedback to make Milankovitch work,?The problem now is identifying which mechanisms are at work. This is why scientists like Edwards are not yet ready to give up on the current theory.

  9. True

  See the sentences in para.9 and para.10 .

  10. constant

  See para.2: According to the standard view, the temperature of the suns core is held constant by the opposing pressures of gravity and nuclear fusion.

  11. orbit

  See para.6: Most scientists believe that the ice ages are the result of subtle changes in Earths orbit, 匛arths orbit gradually changes shape from a circle to a slight ellipse and back again roughly every 100,000 years.

  12. instabilities

  See para.3: ?i style=mso-bidi-font-style:normalmagnetic fields in the suns core could produce small instabilities in the solar plasma. These instabilities would induce localised oscillations in temperature.

  13. cycles

  See para.4: allow the suns core temperature to oscillate around its average temperature of 13.6 million kelvin in cycles lasting either 100,000 or 41,000 years.

  14. random

  See para.4: Ehrlich says that random interactions within the suns magnetic field could flip the fluctuations from one cycle length to the other.

  

  雅思閱讀真題模擬練習

  本系列的模擬試題在難度、長度、題材、題型方面都與雅思考試近似的練習。這些練習,均以國外報刊上的文章為素材,按雅思閱讀的題型,出題并提供答案及簡單注釋。歡迎大家積極使用。

  Suns fickle heart may leave us cold

  1 Theres a dimmer switch inside the sun that causes its brightness to rise and fall on timescales of around 100,000 years - exactly the same period as between ice ages on Earth. So says a physicist who has created a computer model of our stars core.

  2 Robert Ehrlich of George Mason University in Fairfax, Virginia, modelled the effect of temperature fluctuations in the suns interior. According to the standard view, the temperature of the suns core is held constant by the opposing pressures of gravity and nuclear fusion. However, Ehrlich believed that slight variations should be possible.

  3 He took as his starting point the work of Attila Grandpierre of the Konkoly Observatory of the Hungarian Academy of Sciences. In 2005, Grandpierre and a collaborator, Gbor goston, calculated that magnetic fields in the suns core could produce small instabilities in the solar plasma. These instabilities would induce localised oscillations in temperature.

  4 Ehrlichs model shows that whilst most of these oscillations cancel each other out, some reinforce one another and become long-lived temperature variations. The favoured frequencies allow the suns core temperature to oscillate around its average temperature of 13.6 million kelvin in cycles lasting either 100,000 or 41,000 years. Ehrlich says that random interactions within the suns magnetic field could flip the fluctuations from one cycle length to the other.

  5 These two timescales are instantly recognisable to anyone familiar with Earths ice ages: for the past million years, ice ages have occurred roughly every 100,000 years. Before that, they occurred roughly every 41,000 years.

  6 Most scientists believe that the ice ages are the result of subtle changes in Earths orbit, known as the Milankovitch cycles. One such cycle describes the way Earths orbit gradually changes shape from a circle to a slight ellipse and back again roughly every 100,000 years. The theory says this alters the amount of solar radiation that Earth receives, triggering the ice ages. However, a persistent problem with this theory has been its inability to explain why the ice ages changed frequency a million years ago.

  7 In Milankovitch, there is certainly no good idea why the frequency should change from one to another, says Neil Edwards, a climatologist at the Open University in Milton Keynes, UK. Nor is the transition problem the only one the Milankovitch theory faces. Ehrlich and other critics claim that the temperature variations caused by Milankovitch cycles are simply not big enough to drive ice ages.

  8 However, Edwards believes the small changes in solar heating produced by Milankovitch cycles are then amplified by feedback mechanisms on Earth. For example, if sea ice begins to form because of a slight cooling, carbon dioxide that would otherwise have found its way into the atmosphere as part of the carbon cycle is locked into the ice. That weakens the greenhouse effect and Earth grows even colder.

  9 According to Edwards, there is no lack of such mechanisms. If you add their effects together, there is more than enough feedback to make Milankovitch work, he says. The problem now is identifying which mechanisms are at work. This is why scientists like Edwards are not yet ready to give up on the current theory. Milankovitch cycles give us ice ages roughly when we observe them to happen. We can calculate where we are in the cycle and compare it with observation, he says. I cant see any way of testing idea to see where we are in the temperature oscillation.

  10 Ehrlich concedes this. If there is a way to test this theory on the sun, I cant think of one that is practical, he says. Thats because variation over 41,000 to 100,000 years is too gradual to be observed. However, there may be a way to test it in other stars: red dwarfs. Their cores are much smaller than that of the sun, and so Ehrlich believes that the oscillation periods could be short enough to be observed. He has yet to calculate the precise period or the extent of variation in brightness to be expected.

  11 Nigel Weiss, a solar physicist at the University of Cambridge, is far from convinced. He describes Ehrlichs claims as utterly implausible. Ehrlich counters that Weisss opinion is based on the standard solar model, which fails to take into account the magnetic instabilities that cause the temperature fluctuations.

  

  Questions 1-4  Complete each of the following statements with One or Two names of the scientists from the box below.

  Write the appropriate letters A-E in boxes 1-4 on your answer sheet.

  A. Attila Grandpierre

  B. Gbor goston

  C. Neil Edwards

  D. Nigel Weiss

  E. Robert Ehrlich

  1. ...claims there抯 a dimmer switch inside the sun that causes its brightness to rise and fall in periods as long as those between ice ages on Earth.

  2. ...calculated that the internal solar magnetic fields could produce instabilities in the solar plasma.

  3. ...holds that Milankovitch cycles can induce changes in solar heating on Earth and the changes are amplified on Earth.

  4. ...doesnt believe in Ehrlichs viewpoints at all.

  Questions 5-9  Do the following statements agree with the information given in the reading passage?

  In boxes 5-9 on your answer sheet write

  TRUE if the statement is true according to the passage

  FALSE if the statement is false according to the passage

  NOT GIVEN if the information is not given in the passage

  5. The ice ages changed frequency from 100,000 to 41,000 years a million years ago.

  6. The sole problem that the Milankovitch theory can not solve is to explain why the ice age frequency should shift from one to another.

  7. Carbon dioxide can be locked artificially into sea ice to eliminate the greenhouse effect.

  8. Some scientists are not ready to give up the Milankovitch theory though they havent figured out which mechanisms amplify the changes in solar heating.

  9. Both Edwards and Ehrlich believe that there is no practical way to test when the solar temperature oscillation begins and when ends.

  Questions 10-14  Complete the notes below.

  Choose one suitable word from the Reading Passage above for each answer.

  Write your answers in boxes 10-14 on your answer sheet.

  The standard view assumes that the opposing pressures of gravity and nuclear fusions hold the temperature ...10...in the suns interior, but the slight changes in the earths ...11... alter the temperature on the earth and cause ice ages every 100,000 years. A British scientist, however, challenges this view by claiming that the internal solar magnetic ...12... can induce the temperature oscillations in the suns interior. The suns core temperature oscillates around its average temperature in ...13... lasting either 100,000 or 41,000 years. And the ...14... interactions within the suns magnetic field could flip the fluctuations from one cycle length to the other, which explains why the ice ages changed frequency a million years ago.

  Answer keys and explanations:

  1. E

  See the sentences in paragraph 1 and para.2

  2. A B

  See para.3: ?i style=mso-bidi-font-style: normalGrandpierre and a collaborator, Gbor goston, calculated that magnetic fields in the suns core could produce small instabilities in the solar plasma.

  3. C

  See para.8: Edwards believes the small changes in solar heating produced by Milankovitch cycles are then amplified by feedback mechanisms on Earth.

  4. D

  See para.11: Nigel Weiss, a solar physicist at the University of Cambridge, is far from convinced. He describes Ehrlichs claims as utterly implausible.

  5. False

  See para.5: for the past million years, ice ages have occurred roughly every 100,000 years. Before that, they occurred roughly every 41,000 years.

  6. False

  See para.7: In Milankovitch, there is certainly no good idea why the frequency should change from one to another, ... Nor is the transition problem the only one the Milankovitch theory faces.

  7. Not Given

  See para.8: if sea ice begins to form because of a slight cooling, carbon dioxide?is locked into the ice. That weakens the greenhouse effect.

  8. True

  See para.9: there is no lack of such mechanisms. If you add their effects together, there is more than enough feedback to make Milankovitch work,?The problem now is identifying which mechanisms are at work. This is why scientists like Edwards are not yet ready to give up on the current theory.

  9. True

  See the sentences in para.9 and para.10 .

  10. constant

  See para.2: According to the standard view, the temperature of the suns core is held constant by the opposing pressures of gravity and nuclear fusion.

  11. orbit

  See para.6: Most scientists believe that the ice ages are the result of subtle changes in Earths orbit, 匛arths orbit gradually changes shape from a circle to a slight ellipse and back again roughly every 100,000 years.

  12. instabilities

  See para.3: ?i style=mso-bidi-font-style:normalmagnetic fields in the suns core could produce small instabilities in the solar plasma. These instabilities would induce localised oscillations in temperature.

  13. cycles

  See para.4: allow the suns core temperature to oscillate around its average temperature of 13.6 million kelvin in cycles lasting either 100,000 or 41,000 years.

  14. random

  See para.4: Ehrlich says that random interactions within the suns magnetic field could flip the fluctuations from one cycle length to the other.

  

主站蜘蛛池模板: 酒糟烘干机-豆渣烘干机-薯渣烘干机-糟渣烘干设备厂家-焦作市真节能环保设备科技有限公司 | 专业甜品培训学校_广东糖水培训_奶茶培训_特色小吃培训_广州烘趣甜品培训机构 | 阿米巴企业经营-阿米巴咨询管理-阿米巴企业培训-广东键锋企业管理咨询有限公司 | 润滑油加盟_润滑油厂家_润滑油品牌-深圳市沃丹润滑科技有限公司 琉璃瓦-琉璃瓦厂家-安徽盛阳新型建材科技有限公司 | 百方网-百方电气网,电工电气行业专业的B2B电子商务平台 | 温州在线网| 带式压滤机_污泥压滤机_污泥脱水机_带式过滤机_带式压滤机厂家-河南恒磊环保设备有限公司 | 安全,主动,被动,柔性,山体滑坡,sns,钢丝绳,边坡,防护网,护栏网,围栏,栏杆,栅栏,厂家 - 护栏网防护网生产厂家 | 机构创新组合设计实验台_液压实验台_气动实训台-戴育教仪厂 | 天津拓展_天津团建_天津趣味运动会_天津活动策划公司-天津华天拓展培训中心 | 拉力机-万能试验机-材料拉伸试验机-电子拉力机-拉力试验机厂家-冲击试验机-苏州皖仪实验仪器有限公司 | 存包柜厂家_电子存包柜_超市存包柜_超市电子存包柜_自动存包柜-洛阳中星 | 电竞馆加盟,沈阳网吧加盟费用选择嘉棋电竞_售后服务一体化 | POM塑料_PBT材料「进口」聚甲醛POM杜邦原料、加纤PBT塑料报价格找利隆塑料 | 玉米深加工设备|玉米加工机械|玉米加工设备|玉米深加工机械-河南成立粮油机械有限公司 | 净气型药品柜-试剂柜-无管道净气型通风柜-苏州毕恩思 | 食品机械专用传感器-落料放大器-低价接近开关-菲德自控技术(天津)有限公司 | 电动葫芦|环链电动葫芦-北京凌鹰名优起重葫芦 | 铸铁平台,大理石平台专业生产厂家_河北-北重机械 | 压滤机滤板_厢式_隔膜_板框压滤机滤板厂家价格型号材质-大凯环保 | 小型数控车床-数控车床厂家-双头数控车床 | 铜镍-康铜-锰铜-电阻合金-NC003 - 杭州兴宇合金有限公司 | 空压机商城|空气压缩机|空压机配件-压缩机网旗下商城 | 皮带式输送机械|链板式输送机|不锈钢输送机|网带输送机械设备——青岛鸿儒机械有限公司 | 脉冲布袋除尘器_除尘布袋-泊头市净化除尘设备生产厂家 | 国产液相色谱仪-超高效液相色谱仪厂家-上海伍丰科学仪器有限公司 | 净化车间_洁净厂房_净化公司_净化厂房_无尘室工程_洁净工程装修|改造|施工-深圳净化公司 | ★店家乐|服装销售管理软件|服装店收银系统|内衣店鞋店进销存软件|连锁店管理软件|收银软件手机版|会员管理系统-手机版,云版,App | 环境模拟实验室_液体-气体控温机_气体控温箱_无锡双润冷却科技有限公司 | 合肥地磅_合肥数控切割机_安徽地磅厂家_合肥世佳电工设备有限公司 | 蔬菜配送公司|蔬菜配送中心|食材配送|饭堂配送|食堂配送-首宏公司 | 陕西视频监控,智能安防监控,安防系统-西安鑫安5A安防工程公司 | 油液红外光谱仪-油液监测系统-燃油嗅探仪-上海冉超光电科技有限公司 | 北京网络营销推广_百度SEO搜索引擎优化公司_网站排名优化_谷歌SEO - 北京卓立海创信息技术有限公司 | 缠绕机|缠绕膜包装机|缠绕包装机-上海晏陵智能设备有限公司 | 德国UST优斯特氢气检漏仪-德国舒赐乙烷检测仪-北京泽钏 | 玖容气动液压设备有限公司-气液增压缸_压力机_增压机_铆接机_增压器 | 青岛空压机,青岛空压机维修/保养,青岛空压机销售/出租公司,青岛空压机厂家电话 | 浇钢砖,流钢砖_厂家价低-淄博恒森耐火材料有限公司 | 合肥角钢_合肥槽钢_安徽镀锌管厂家-昆瑟商贸有限公司 | SPC工作站-连杆综合检具-表盘气动量仪-内孔缺陷检测仪-杭州朗多检测仪器有限公司 |