语料库-提供经典范文,文案句子,常用文书,您的写作得力助手

英語四級閱讀200篇: Unit 43 passage 1

雕龍文庫 分享 時間: 收藏本文

英語四級閱讀200篇: Unit 43 passage 1

  Sometimes when Richard Anderson closes his eyes at night he still has visions of Colorado potato beetles. Ive seen them in the furrows inches thick. Millions of them. You can have potatoes 2 feet high, and they eat them right to the ground, says the 51-year-old farmer. Anderson and his family had grown potatoes on their River head, Long Island, farm since the 1940s, but four years ago they got out of the business-largely because they couldnt control the potato beetle. We were forever spraying, he recalls, but they were just immune.

  For farmers like Anderson, pesticide use has become not the solution but a cause of many pest problems. Rachel Carson predicted as much 30 years ago in Silent Spring, though the public paid little notice amid the furor her book sparked over pesticides ecological and health effects. In recent years, however, pesticides shortcomings have grown harder to ignore in light of mountain pesticide resistance and destruction of beneficial insects. In fact, a growing number of agricultural experts now argue that reducing pesticide use can actually decrease pests. Pest control has reached a turning point, says pest control expert Robert Metcalf of the University of Illinois at Urbana.

  When DDT, the first widely used synthetic pesticide, hit the market in 1946, it looked like the silver bullet that would wipe out insect pests forever. Before DDT, American farmers lost about a third of their crops each year to insects, weeds and disease. Today, with an annual pesticide bill exceeding $ 4 billion, farmers still lose the same one-third share a loss that mounts into the tens of billions of dollars each year.

  Chemical pest control has grown steadily more difficult because of a growing number of pesticide-resistant insects and weeds. Resistance is biologically inescapable: Each time a farmer sprays a field, the few bugs genetically able to tolerate the poison stand the best chance of surviving to produce the .next generation of increasingly resilient insects. Its just accelerated evolution. Darwin would be pleased, says Metcalf. In 1948 just 14 species of insects were resistant to one or more pesticides; more than 500 are resistant today. Even the bacterial insecticide Bacillus thuringiensis, or Bt, once touted as practically resistance proof because of its complexity, is beginning to lose its effectiveness on a few agricultural pests.

  More ominous , several important insects have developed resistance to every major insecticide. In the state of Gujarat in India, for instance, the mosquitoes that transmit malaria are resistant to every affordable insecticide, and malaria rates are surging. Similarly in the northeastern United States, the Colorado potato beetle has become resistant to at least 15 chemicals, leaving potato growers dependent on a compound not yet formally approved for potatoes.

  Pesticides also create new pests because they destroy the spiders, wasps and predatory beetle that naturally keep most plant-feeding insect populations in check. The brown plant hopper that plagued Indonesian rice fields in the 1970s and 80s was not a serious problem until 1970, shortly after heavy insecticide use began. In the United States, such major pests as spider mites and cotton bollworm were nuisances at most until spraying decimated their predator.

  Even so many farmers feel they would have a tough time staying in business without pesticides. Quick and direct pesticides help protect farmers from ruinous losses caused by a sudden pest outbreak. They also allow use of more pest-prone practices like larger fields planted to a single crop so that farmers can specialize in fewer crops, maximizing efficiency. And though a small minority of farmers have successfully abandoned pesticides altogether most experts and even some organic farmers admit that quitting cold turkey is not feasible for every crop or in every region of the country.

  Not surprisingly, there is new interest in an option that has been around for decades; a multi-pronged strategy known as integrated pest management that many experts say can reduce pesticide use by 50 percent or more without lowering yields. Farmers choose among a variety of techniques including rotating crops, planting pest-resistant varieties and encouraging the build-up of natural enemies to prevent pest outbreaks. Pesticides are used as little as possible and only if non-chemical measures fail to keep pests below damaging levels.

  Researchers continue adding to the IPM arsenal. One new technique, pioneered by Metcalf and approved last month by the U. S. Environmental Protection Agency, uses poison bait laced with a chemical from the host plant that entices the pests to eat the poison; insects that dont naturally feed on the crop ignore the chemical cue and escape the poison. West Coast artichoke and cranberry growers are experimenting with tiny roundworms to kill insects. Biologists at Cornell University are developing a potato variety with sticky leaf hairs that repel beetles and aphids, and entomologists at Washington State University are experimenting with a common potato-field weed that beetle find so tasty they ignore nearby potatoes.

  Many IPM programs have been astonishingly successful. After years of heavy pesticide use had only worsened the brown plant hopper problem in rice fields, the Indonesian government in 1986 banned dozens of insecticides and invested millions of dollars in IPM training for farmers. In the next four years, the countrys pesticide use fell 50 percent, rice yields rose 12 percent and the brown plant hopper problem faded away. In the Rio Grande Valley of Texas, IPM has allowed cotton farmers to go from 12 sprayings per year to just four. Besides reducing risks to wildlife or human health, such efforts carry a less obvious benefit: resistance develops more slowly when pests are zapped less often.

  Fed by success stories like these, interest in IPM programs is gradually spreading throughout mainstream American agriculture. Farm organizations, environmentalists and even chemical companies have joined forces to push for wider use of IPM, though a few critics charge that some of this support is little more than lip service to justify continued reliance on pesticides. In the governmental ranks, the U. S. Department of Agriculture and the Environmental Protection Agency not previously the most cordial of partners on pesticide issues, according to IPM program coordinator Michael Fitzner of the USDA Extension Service have begun cooperating on IPM research and policy.

  Nevertheless, IPM has been slow to appear in farmers fields. Although it has become the norm for a few crops such as cotton, citrus, apples and tomatoes only about a quarter of high-acreage field crops like corn, wheat and soybeans have made the transition. Most experts blame a shortage of IPM specialists and a lack of funds for educating farmers in the new techniques. In addition, economic constraints often hinder the switch to IPM. In northeastern states, for example, many growers say they cant afford to rotate potatoes with crops like soybeans or wheat an effective way to control potato beetles because land rents are too high to make these lower-grossing crops profitable.

  1. All pesticides, from the first widely used DDT to bacterial insecticide Bt, have gradually lost their effectiveness.

  2. American farmers lose the same amount of crops each year as they did before the use of DDT.

  3. Pests who can survive pesticides produce more adaptable young generations, which quickens the speed of evolution of pests.

  4. In India, The number of some pests grew rapidly and became much more serious problems because their natural enemies were killed by pesticides.

  5. Many farmers believe that it is possible to stop using pesticides without affecting their business.

  6. Despite the unsatisfactory development, IPM programs have attracted growing attention in American agriculture.

  7. IPM is and will be the only answer to the pesticides problems now and far in the future.

  8. IPM stands for______.

  9. In Indonesia four years after the ban on dozens of insecticides in 1986, the brown plant hopper problem______.

  10. The numbers of species resistant to one or more pesticides in 1948 and today were

  答案:

  1. Y 2. N 3. Y 4. N 5. N 6. Y 7. NG

  8. integrated pest management 9. faded away 10. 14 and more than 500

  

  Sometimes when Richard Anderson closes his eyes at night he still has visions of Colorado potato beetles. Ive seen them in the furrows inches thick. Millions of them. You can have potatoes 2 feet high, and they eat them right to the ground, says the 51-year-old farmer. Anderson and his family had grown potatoes on their River head, Long Island, farm since the 1940s, but four years ago they got out of the business-largely because they couldnt control the potato beetle. We were forever spraying, he recalls, but they were just immune.

  For farmers like Anderson, pesticide use has become not the solution but a cause of many pest problems. Rachel Carson predicted as much 30 years ago in Silent Spring, though the public paid little notice amid the furor her book sparked over pesticides ecological and health effects. In recent years, however, pesticides shortcomings have grown harder to ignore in light of mountain pesticide resistance and destruction of beneficial insects. In fact, a growing number of agricultural experts now argue that reducing pesticide use can actually decrease pests. Pest control has reached a turning point, says pest control expert Robert Metcalf of the University of Illinois at Urbana.

  When DDT, the first widely used synthetic pesticide, hit the market in 1946, it looked like the silver bullet that would wipe out insect pests forever. Before DDT, American farmers lost about a third of their crops each year to insects, weeds and disease. Today, with an annual pesticide bill exceeding $ 4 billion, farmers still lose the same one-third share a loss that mounts into the tens of billions of dollars each year.

  Chemical pest control has grown steadily more difficult because of a growing number of pesticide-resistant insects and weeds. Resistance is biologically inescapable: Each time a farmer sprays a field, the few bugs genetically able to tolerate the poison stand the best chance of surviving to produce the .next generation of increasingly resilient insects. Its just accelerated evolution. Darwin would be pleased, says Metcalf. In 1948 just 14 species of insects were resistant to one or more pesticides; more than 500 are resistant today. Even the bacterial insecticide Bacillus thuringiensis, or Bt, once touted as practically resistance proof because of its complexity, is beginning to lose its effectiveness on a few agricultural pests.

  More ominous , several important insects have developed resistance to every major insecticide. In the state of Gujarat in India, for instance, the mosquitoes that transmit malaria are resistant to every affordable insecticide, and malaria rates are surging. Similarly in the northeastern United States, the Colorado potato beetle has become resistant to at least 15 chemicals, leaving potato growers dependent on a compound not yet formally approved for potatoes.

  Pesticides also create new pests because they destroy the spiders, wasps and predatory beetle that naturally keep most plant-feeding insect populations in check. The brown plant hopper that plagued Indonesian rice fields in the 1970s and 80s was not a serious problem until 1970, shortly after heavy insecticide use began. In the United States, such major pests as spider mites and cotton bollworm were nuisances at most until spraying decimated their predator.

  Even so many farmers feel they would have a tough time staying in business without pesticides. Quick and direct pesticides help protect farmers from ruinous losses caused by a sudden pest outbreak. They also allow use of more pest-prone practices like larger fields planted to a single crop so that farmers can specialize in fewer crops, maximizing efficiency. And though a small minority of farmers have successfully abandoned pesticides altogether most experts and even some organic farmers admit that quitting cold turkey is not feasible for every crop or in every region of the country.

  Not surprisingly, there is new interest in an option that has been around for decades; a multi-pronged strategy known as integrated pest management that many experts say can reduce pesticide use by 50 percent or more without lowering yields. Farmers choose among a variety of techniques including rotating crops, planting pest-resistant varieties and encouraging the build-up of natural enemies to prevent pest outbreaks. Pesticides are used as little as possible and only if non-chemical measures fail to keep pests below damaging levels.

  Researchers continue adding to the IPM arsenal. One new technique, pioneered by Metcalf and approved last month by the U. S. Environmental Protection Agency, uses poison bait laced with a chemical from the host plant that entices the pests to eat the poison; insects that dont naturally feed on the crop ignore the chemical cue and escape the poison. West Coast artichoke and cranberry growers are experimenting with tiny roundworms to kill insects. Biologists at Cornell University are developing a potato variety with sticky leaf hairs that repel beetles and aphids, and entomologists at Washington State University are experimenting with a common potato-field weed that beetle find so tasty they ignore nearby potatoes.

  Many IPM programs have been astonishingly successful. After years of heavy pesticide use had only worsened the brown plant hopper problem in rice fields, the Indonesian government in 1986 banned dozens of insecticides and invested millions of dollars in IPM training for farmers. In the next four years, the countrys pesticide use fell 50 percent, rice yields rose 12 percent and the brown plant hopper problem faded away. In the Rio Grande Valley of Texas, IPM has allowed cotton farmers to go from 12 sprayings per year to just four. Besides reducing risks to wildlife or human health, such efforts carry a less obvious benefit: resistance develops more slowly when pests are zapped less often.

  Fed by success stories like these, interest in IPM programs is gradually spreading throughout mainstream American agriculture. Farm organizations, environmentalists and even chemical companies have joined forces to push for wider use of IPM, though a few critics charge that some of this support is little more than lip service to justify continued reliance on pesticides. In the governmental ranks, the U. S. Department of Agriculture and the Environmental Protection Agency not previously the most cordial of partners on pesticide issues, according to IPM program coordinator Michael Fitzner of the USDA Extension Service have begun cooperating on IPM research and policy.

  Nevertheless, IPM has been slow to appear in farmers fields. Although it has become the norm for a few crops such as cotton, citrus, apples and tomatoes only about a quarter of high-acreage field crops like corn, wheat and soybeans have made the transition. Most experts blame a shortage of IPM specialists and a lack of funds for educating farmers in the new techniques. In addition, economic constraints often hinder the switch to IPM. In northeastern states, for example, many growers say they cant afford to rotate potatoes with crops like soybeans or wheat an effective way to control potato beetles because land rents are too high to make these lower-grossing crops profitable.

  1. All pesticides, from the first widely used DDT to bacterial insecticide Bt, have gradually lost their effectiveness.

  2. American farmers lose the same amount of crops each year as they did before the use of DDT.

  3. Pests who can survive pesticides produce more adaptable young generations, which quickens the speed of evolution of pests.

  4. In India, The number of some pests grew rapidly and became much more serious problems because their natural enemies were killed by pesticides.

  5. Many farmers believe that it is possible to stop using pesticides without affecting their business.

  6. Despite the unsatisfactory development, IPM programs have attracted growing attention in American agriculture.

  7. IPM is and will be the only answer to the pesticides problems now and far in the future.

  8. IPM stands for______.

  9. In Indonesia four years after the ban on dozens of insecticides in 1986, the brown plant hopper problem______.

  10. The numbers of species resistant to one or more pesticides in 1948 and today were

  答案:

  1. Y 2. N 3. Y 4. N 5. N 6. Y 7. NG

  8. integrated pest management 9. faded away 10. 14 and more than 500

  

主站蜘蛛池模板: 河南不锈钢水箱_地埋水箱_镀锌板水箱_消防水箱厂家-河南联固供水设备有限公司 | 粘度计维修,在线粘度计,二手博勒飞粘度计维修|收购-天津市祥睿科技有限公司 | 电池挤压试验机-自行车喷淋-车辆碾压试验装置-深圳德迈盛测控设备有限公司 | 河南橡胶接头厂家,河南波纹补偿器厂家,河南可曲挠橡胶软连接,河南套筒补偿器厂家-河南正大阀门 | LZ-373测厚仪-华瑞VOC气体检测仪-个人有毒气体检测仪-厂家-深圳市深博瑞仪器仪表有限公司 | 临朐空调移机_空调维修「空调回收」临朐二手空调 | 光谱仪_积分球_分布光度计_灯具检测生产厂家_杭州松朗光电【官网】 | 南京泽朗生物科技有限公司| 体视显微镜_荧光生物显微镜_显微镜报价-微仪光电生命科学显微镜有限公司 | 粉末冶金-粉末冶金齿轮-粉末冶金零件厂家-东莞市正朗精密金属零件有限公司 | 青州搬家公司电话_青州搬家公司哪家好「鸿喜」青州搬家 | 特种阀门-调节阀门-高温熔盐阀-镍合金截止阀-钛阀门-高温阀门-高性能蝶阀-蒙乃尔合金阀门-福建捷斯特阀门制造有限公司 | 上海盐水喷雾试验机_两厢式冷热冲击试验箱-巨怡环试 | 臭氧灭菌箱-油桶加热箱-原料桶加热融化烘箱-南京腾阳干燥设备厂 臭氧发生器_臭氧消毒机 - 【同林品牌 实力厂家】 | 啤酒设备-小型啤酒设备-啤酒厂设备-济南中酿机械设备有限公司 | 烟雾净化器-滤筒除尘器-防爆除尘器-除尘器厂家-东莞执信环保科技有限公司 | 钢绞线万能材料试验机-全自动恒应力两用机-混凝土恒应力压力试验机-北京科达京威科技发展有限公司 | 企典软件一站式企业管理平台,可私有、本地化部署!在线CRM客户关系管理系统|移动办公OA管理系统|HR人事管理系统|人力 | PSI渗透压仪,TPS酸度计,美国CHAI PCR仪,渗透压仪厂家_价格,微生物快速检测仪-华泰和合(北京)商贸有限公司 | 厂房出租_厂房出售_产业园区招商_工业地产 - 中工招商网 | 贝朗斯动力商城(BRCPOWER.COM) - 买叉车蓄电池上贝朗斯商城,价格更超值,品质有保障! | 旋振筛|圆形摇摆筛|直线振动筛|滚筒筛|压榨机|河南天众机械设备有限公司 | 澳门精准正版免费大全,2025新澳门全年免费,新澳天天开奖免费资料大全最新,新澳2025今晚开奖资料,新澳马今天最快最新图库-首页-东莞市傲马网络科技有限公司 | 螺杆真空泵_耐腐蚀螺杆真空泵_水环真空泵_真空机组_烟台真空泵-烟台斯凯威真空 | 大型工业风扇_工业大风扇_大吊扇_厂房车间降温-合昌大风扇 | 宜兴市恺瑞德环保科技有限公司 | 净水器代理,净水器招商,净水器加盟-FineSky德国法兹全屋净水 | 双相钢_双相不锈钢_双相钢圆钢棒_双相不锈钢报价「海新双相钢」 双能x射线骨密度检测仪_dxa骨密度仪_双能x线骨密度仪_品牌厂家【品源医疗】 | 深圳VI设计-画册设计-LOGO设计-包装设计-品牌策划公司-[智睿画册设计公司] | 车间除尘设备,VOCs废气处理,工业涂装流水线,伸缩式喷漆房,自动喷砂房,沸石转轮浓缩吸附,机器人喷粉线-山东创杰智慧 | 热熔胶网膜|pes热熔网膜价格|eva热熔胶膜|热熔胶膜|tpu热熔胶膜厂家-苏州惠洋胶粘制品有限公司 | 软装设计-提供软装装饰和软装配饰及软装陈设的软装设计公司 | 网站优化公司_SEO优化_北京关键词百度快速排名-智恒博网络 | 智能型高压核相仪-自动开口闪点测试仪-QJ41A电雷管测试仪|上海妙定 | 太平洋亲子网_健康育儿 品质生活 | 智慧消防-消防物联网系统云平台| 打包钢带,铁皮打包带,烤蓝打包带-高密市金和金属制品厂 | 蒸汽热收缩机_蒸汽发生器_塑封机_包膜机_封切收缩机_热收缩包装机_真空机_全自动打包机_捆扎机_封箱机-东莞市中堡智能科技有限公司 | 石家庄网站建设|石家庄网站制作|石家庄小程序开发|石家庄微信开发|网站建设公司|网站制作公司|微信小程序开发|手机APP开发|软件开发 | 气象监测系统_气象传感器_微型气象仪_气象环境监测仪-山东风途物联网 | 真空上料机(一种真空输送机)-百科 |